A Fixed Points Approach to stability of the Pexider Equation

Belaid Bouikhalene¹, Elhoucien Elqorachi², John Michael Rassias³

¹ Polydisciplinary Faculty, Sultan Moulay Slimane university, Beni Mellal, Morocco.
² Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
³ The National and Capodistrian University of Athens Section of Mathematics, Informatics Pedagogical Department
E.E. Agamemnonos Str., Aghia Paraskevi, Attikis 15342, Athens, GREECE
E-mail: bbouikhalene@yahoo.fr, elqorachi@hotmail.com, Ioannis.Rassias@primedu.uoa.gr

Abstract

Using the fixed point theorem we establish the Hyers-Ulam-Rassias stability of the generalized
Pexider functional equation

$$\frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) = g(x) + h(y), \quad x, y \in E$$

from a normed space E into a complete β-normed space F, where K is a finite abelian subgroup
of the automorphism group of the group $(E, +)$.

2010 Mathematics Subject Classification. 39B82, 39B52.
Keywords. Stability of functional equation, fixed point, Pexider equation.

1 Introduction and Preliminaries

Under what condition does there exist a group homomorphism near an approximate group homo-
morphism? This question concerning the stability of group homomorphisms was posed by S. M.
Ulam [58]. In 1941, the Ulam’s problem for the case of approximately additive mappings was solved
theorem for additive mappings and in 1978 Th. M. Rassias [47] generalized the Hyers’ theorem for
linear mappings by considering an unbounded Cauchy difference. The result of Rassias’ theorem
has been generalized by J.M. Rassias [44] and later by Gavruta [18] who permitted the Cauchy dif-
fERENCE to be bounded by a general control function. Since then, the stability problems for several
functional equations have been extensively investigated (cf. [16], [19], [23], [24], [25], [26], [27], [32],
[11], [44], [45], [48], [49]).

Let E be a real vector space and F be a real Banach space. Let K be a finite abelian subgroup
of $Aut(E)$ (the automorphism group of the group $(E, +)$). $|K|$ denotes the order of K. Writing
the action of $k \in K$ on $x \in E$ as $k \cdot x$, we will say that $(f, g, h) : E \to F$ is a solution of the generalized
Pexider functional equation, if
\[\frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) = g(x) + h(y), \quad x, y \in E \] (1.1)
The generalized quadratic functional equation
\[\frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) = f(x) + f(y), \quad x, y \in E \] (1.2)
and the generalized Jensen functional equation
\[\frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) = f(x), \quad x, y \in E \] (1.3)
are particulars cases of equation (1.1).
The functional equations (1.1), (1.2) and (1.3) appeared in several works by H. Stetkær, see for example [55], [56] and [57]. We refer also to the recent studies by L. Radoslaw [50] and [51].
If we set \(K = \{ I, \sigma \} \), were \(I : E \to E \) denotes the identity function and \(\sigma \) denote an additive function of \(E \), such that \(\sigma(\sigma(x)) = x \), for all \(x \in E \) then equation (1.1) reduces to the Pexider functionals equations
\[f(x + y) + f(x + \sigma(y)) = g(x) + h(y), \quad x, y \in E, \] (1.4)
\[f(x + y) = g(x) + h(y), \quad x, y \in E, \quad (\sigma = I) \] (1.5)
\[f(x + y) + f(x - y) = g(x) + h(y), \quad x, y \in E, \quad (\sigma = -I) \] (1.6)
Y. H. Lee and K. W. Jung [33] obtained the Hyers-Ulam-Rassias of the Pexider functional equation (1.5). Jung [27] and Jung and Sahoo [30] investigated the Hyers-Ulam-Rassias stability of equation (1.6). Belaid et al. have proved the Hyers-Ulam stability of equation (1.1) and the Hyers-Ulam-Rassias stability of the functional equations (1.2), (1.3), (see [1], [11], [12] and [34]).
Recently, Radoslaw [50] obtained the Hyers-Ulam-Rassias stability of equation (1.1). In 2003 L. Ćadariu and V. Radu [9] notice that a fixed point alternative method is very important for the solution of the Hyers-Ulam stability problem. Subsequently, this method was applied to investigate the Hyers-Ulam-Rassias stability for Jensen functional equation, as well as for the additive Cauchy functional equation [12] by considering a general control function \(\varphi(x, y) \), with suitable properties, using such an elegant idea, several authors applied the method to investigate the stability of some functional equations, see for example [3], [4], [5], [6], [31], [35], [43].
In this paper, we will apply the fixed point method as in [9] to prove the Hyers-Ulam-Rassias stability of the functional equations (1.1), for a large classe of functions from a vector space \(E \) into complete \(\beta \)-normed space \(F \).

Now, we recall one of fundamental results of fixed point theory.
Let \(X \) be a set. A function \(d : X \times X \to [0, +\infty] \) is called a generalized metric on \(X \) if \(d \) satisfies the following:
(1) \(d(x, y) = 0 \) if and only if \(x = y \);
(2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);
(2) \(d(x, z) \leq d(x, y) + d(y, z) \) for all \(x, y, z \in X \).
Theorem 1.1. \[15\] Suppose we are given a complete generalized metric space \((X, d)\) and a strictly contractive mapping \(J : X \to X\), while the Lipschitz constant \(L < 1\). If there exists a nonnegative integer \(k\) such that \(d(J^k, x, J^{k+1} x) < +\infty\) for some \(x \in X\), then the following are true:

1. the sequence \(J^n x\) converges to a fixed point \(x^*\) of \(J\);
2. \(x^*\) is the unique fixed point of \(J\) in the set \(Y = \{y \in X : d(J^k, x, y) < +\infty\}\);
3. \(d(y, x^*) \leq \frac{1}{1-L} d(y, Jy)\) for all \(y \in Y\).

Throughout this paper, we fix a real number \(\beta\) with \(0 < \beta \leq 1\) and let \(\mathbb{K}\) denote either \(\mathbb{R}\) or \(\mathbb{C}\). Suppose \(E\) is a vector space over \(\mathbb{K}\). A function \(\| \cdot \|_\beta : E \to [0, \infty)\) is called a \(\beta\)-norm if and only if it satisfies

1. \(\|x\|_\beta = 0\), if and only if \(x = 0\);
2. \(\|\lambda x\|_\beta = |\lambda| \|x\|_\beta\) for all \(\lambda \in \mathbb{K}\) and all \(x \in E\);
3. \(\|x + y\|_\beta \leq \|x\|_\beta + \|y\|_\beta\) for all \(x, y \in E\).

2 main results

In the following theorem, by using an idea of Cădariu and Radu \[9, 12\], we prove the Hyers-Ulam-Rassias stability of the generalized Pexider functional equation (1.1).

Theorem 2.1. Let \(E\) be a vector space over \(\mathbb{K}\) and let \(F\) be a complete \(\beta\)-normed space over \(\mathbb{K}\). Let \(K\) be a finite abelian subgroup of the automorphism group of \((E, +)\). Let \(f : E \to F\) be a mapping for which there exists a function \(\varphi : E \times F \to [0, \infty)\) and a constant \(L < 1\), such that

\[
\frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - g(x) - h(y) \leq \varphi(x, y) \tag{2.1}
\]

and

\[
\sum_{k \in K} \varphi(x + k \cdot x, y + k \cdot y) \leq (|K|)^\beta L \varphi(x, y) \tag{2.2}
\]

for all \(x, y \in E\). Then, there exists a unique solution \(q : E \to F\) of the generalized quadratic functional equation (1.2) and a unique solution \(j : E \to F\) of the generalized Jensen functional equation (1.3) such that

\[
\frac{1}{|K|} \sum_{k \in K} j(k \cdot x) = 0, \tag{2.3}
\]

\[
\|f(x) - q(x) - j(x) - g(0) - h(0)\|_\beta \leq \frac{2}{2\beta} \frac{1}{1-L} \chi(x, x) + \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x), \tag{2.4}
\]

\[
\|g(x) - q(x) - j(x) - g(0)\|_\beta \leq \varphi(x, 0) + \frac{2}{2\beta} \frac{1}{1-L} \chi(x, x) + \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x) \tag{2.5}
\]

and

\[
\|h(x) - q(x) - h(0)\|_\beta \leq \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x) + \varphi(0, x) \tag{2.6}
\]

for all \(x \in E\), where

\[
\chi(x, y) = \frac{|K|}{|K|^\beta} \varphi(0, y) + \varphi(x, y) + \varphi(x, 0) + \varphi(0, y)
\]
\[+ \frac{1}{|K|^\beta} \sum_{k \in K} [\varphi(k \cdot x, y) + \varphi(k \cdot x, 0)] \]

and
\[
\psi(x, y) = \frac{|K|}{|K|^\beta} \varphi(0, y) + \frac{1}{|K|^\beta} \sum_{k \in K} [\varphi(k \cdot x, y) + \varphi(k \cdot x, 0)].
\]

Proof. Letting \(y = 0 \) in (2.1), to obtain
\[
\|f(x) - g(x) - h(0)\|_\beta \leq \varphi(x, 0)
\] (2.7)
for all \(x \in E \). By using (2.7), (2.1) and the triangle inequality, we get
\[
\| \frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - f(x) - (h(y) - h(0)) \|_\beta \leq \frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - g(x) - (h(y) - h(0)) \|_\beta
\] (2.8)
\[
+ \|g(x) - f(x) + h(0)\|_\beta \leq \varphi(x, y) + \varphi(x, 0)
\]
for all \(x, y \in E \). Replacing \(x \) by 0 in (2.1), we get
\[
\| \frac{1}{|K|} \sum_{k \in K} f(k \cdot y) - g(0) - h(y)\|_\beta \leq \varphi(0, y)
\] (2.9)
for all \(y \in E \). So inequalities (2.8), (2.9) and the triangle inequality implies that
\[
\| \frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - f(x) - \frac{1}{|K|} \sum_{k \in K} f(k \cdot y) + g(0) + h(0)\|_\beta \leq \frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - f(x) - (h(y) - h(0)) \|_\beta
\] (2.10)
\[
+ \| \frac{1}{|K|} \sum_{k \in K} f(k \cdot y) - h(0) - g(0)\|_\beta \leq \varphi(x, y) + \varphi(x, 0) + \varphi(0, y)
\]
for all \(x, y \in E \). Now, let
\[
\varphi(x) = \frac{1}{|K|} \sum_{k \in K} f(k \cdot x)
\] (2.11)
for all \(x \in E \). Then, \(\varphi \) satisfies
\[
\frac{1}{|K|} \sum_{k \in K} \varphi(k \cdot x) = \varphi(x)
\] (2.12)
for all \(x \in E \). Furthermore, in view of (2.10), (2.12) and the triangle inequality, we have
\[
\| \frac{1}{|K|} \sum_{k' \in K} [\varphi(x + k' \cdot y) - \varphi(x) - \varphi(y) + g(0) + h(0)] \|_\beta
\] (2.13)
\[
= \| \frac{1}{|K|} \sum_{k' \in K} \frac{1}{|K|} \sum_{k \in K} f(k \cdot x + k'k \cdot y) - \frac{1}{|K|} \sum_{k \in K} f(k \cdot x) - \frac{1}{|K|^2} \sum_{k,k' \in K} f(kk' \cdot y) + g(0) + h(0) \|_\beta
\]
\[
\leq \frac{1}{|K|^\beta} \sum_{k \in K} \| \frac{1}{|K|} \sum_{k' \in K} f(k \cdot x + k' \cdot y) - f(k \cdot x) - \frac{1}{|K|} \sum_{k' \in K} f(k' \cdot y) + g(0) + h(0) \|_\beta
\]
\[\leq \frac{1}{|K|^\beta} \sum_{k \in K} [\varphi(k \cdot x, y) + \varphi(k \cdot x, 0)] + \frac{|K|}{|K|^\beta} \varphi(0, y) = \psi(x, y). \]

Since \(K \) is an abelian subgroup, so by using (2.2), we get
\[
\sum_{k \in K} \psi(x + k \cdot x, y + k \cdot y) \leq (2|K|)^\beta L\psi(x, y)
\] (2.14)

for all \(x, y \in E \). Let us consider the set \(X := \{ g : E \to F \} \) and introduce the generalized metric on \(X \) as follows:
\[
d(g, h) = \inf \{ C \in [0, \infty] : \| g(x) - h(x) \|_\beta \leq C\psi(x, x), \forall x \in E \}. \quad (2.15)
\]

Let \(f_n \) be a Cauchy sequence in \((X, d) \). According to the definition of the Cauchy sequence, for any given \(\varepsilon > 0 \), there exists a positive integer \(N \) such that
\[
d(f_n, f_m) \leq \varepsilon
\] (2.16)

for all integer \(m, n \) such that \(m \geq N \) and \(n \geq N \). That is, by considering the definition of the generalized metric \(d \)
\[
\| f_m(x) - f_n(x) \|_\beta \leq \varepsilon\psi(x, x)
\] (2.17)

for all integer \(m, n \) such that \(m \geq N \) and \(n \geq N \), which implies that \(f_n(x) \) is a Cauchy sequence in \(F \), for any fixed \(x \in E \). Since \(F \) is complete, \(f_n(x) \) converges in \(F \) for each \(x \) in \(E \). Hence, we can define a function \(f : E \to F \) by
\[
f(x) = \lim_{n \to \infty} f_n(x).
\] (2.18)

As a similar proof to [34], we consider the linear operator \(J : X \to X \) such that
\[
(Jh)(x) = \frac{1}{2|K|} \sum_{k \in K} h(x + k \cdot x)
\] (2.19)

for all \(x \in E \). By induction, we can easily show that
\[
(J^n h)(x) = \frac{1}{(2|K|)^n} \sum_{k_1, \ldots, k_n \in K} h \left(x + \sum_{i_j < i_{j+1}, k_{i_j} \in \{k_1, \ldots, k_n\}} (k_{i_1} \ldots k_{i_p}) \cdot x \right)
\] (2.20)

for all integer \(n \).

First, we assert that \(J \) is strictly contractive on \(X \). Given \(g \) and \(h \) in \(X \), let \(C \in [0, \infty) \) be an arbitrary constant with \(d(g, h) \leq C \), that is,
\[
\| g(x) - h(x) \|_\beta \leq C\psi(x, x)
\] (2.21)
for all \(x \in E \). So, it follows from (2.19), (2.14) and (2.21) we get

\[
\|(Jg)(x) - (Jh)(x)\|_\beta = \frac{1}{2|K|} \sum_{k \in K} g(x + k \cdot x) - \frac{1}{2|K|} \sum_{k \in K} h(x + k \cdot x)\|_\beta
\]

\[
= \frac{1}{(2|K|)^\beta} \sum_{k \in K} g(x + k \cdot x) - h(x + k \cdot x)\|_\beta
\]

\[
\leq \frac{1}{(2|K|)^\beta} \sum_{k \in K} \|g(x + k \cdot x) - h(x + k \cdot x)\|_\beta
\]

\[
\leq \frac{1}{(2|K|)^\beta} C \sum_{k \in K} \psi(x + k \cdot x, x + k \cdot x)
\]

\[
\leq CL\psi(x, x)
\]

for all \(x \in E \), that is, \(d(Jg, Jh) \leq LC \). Hence, we conclude that

\[d(Jg, Jh) \leq Ld(g, h) \]

for any \(g, h \in X \). Now, we claim that

\[d(J(\varphi - g(0) - h(0)), \varphi - g(0) - h(0)) < \infty. \tag{2.22} \]

By letting \(y = x \) in (2.13), we obtain

\[
\|(J(\varphi-g(0)-h(0)))(x) - (\varphi-g(0)-h(0))(x)\|_\beta = \frac{1}{2^\beta} \||J| \sum_{k \in K} \varphi(x + k \cdot x) - 2\varphi(x) + g(0) + h(0)\|_\beta \leq \frac{1}{2^\beta} \psi(x, x) \tag{2.23} \]

for all \(x \in E \), that is

\[d(J(\varphi - g(0) - h(0)), \varphi - g(0) - h(0)) \leq \frac{1}{2^\beta} < \infty \tag{2.24} \]

From Theorem 1.1, there exists a fixed point of \(J \) which is a function \(q : E \to F \) such that \(\lim_{n \to \infty} d(J^n(\varphi - g(0) - h(0)), q) = 0 \). Since \(d(J^n(\varphi - g(0) - h(0)), q) \to 0 \) as \(n \to \infty \), there exists a sequence \(\{C_n\} \) such that \(\lim_{n \to \infty} C_n = 0 \) and \(d(J^n\varphi - g(0) - h(0), q) \leq C_n \) for every \(n \in \mathbb{N} \). Hence, from the definition of \(d \), we get

\[\|(J^n(\varphi - g(0) - h(0))(x) - q(x)\|_\beta \leq C_n\psi(x, x) \tag{2.25} \]

for all \(x \in E \). Therefore,

\[\lim_{n \to \infty} \|(J^n(\varphi - g(0) - h(0))(x) - q(x)\|_\beta = 0, \tag{2.26} \]

for all \(x \in E \).

Now, if we put \(\kappa(x) = \varphi(x) - g(0) - h(0) \), by using induction on \(n \) we prove the validity of following inequality

\[\frac{1}{|K|} \sum_{k \in K} J^n\kappa(x + k \cdot y) - J^n\kappa(x) - J^n\kappa(y)\|_\beta \leq L^n\psi(x, y). \tag{2.27} \]
In view of the commutativity of K the inequalities \([2.13],\ (2.14)\) we have

\[
\left\| \frac{1}{|K|} \sum_{k \in K} J f(x + k \cdot y) - J \kappa(x) - J \kappa(y) \right\|_{\beta}
\]

\[= \left\| \frac{1}{|K|} \sum_{k \in K} 2\left|\frac{1}{K}\right| \sum_{k' \in K} \kappa(x + k \cdot y + k_1 \cdot x + k_1 \cdot y) - \frac{1}{2|K|} \sum_{k \in K} \kappa(x + k \cdot x) - \frac{1}{2|K|} \sum_{k \in K} \kappa(y + k \cdot y) \right\|_{\beta}
\]

\[\leq \left(2|K|\right)^{\beta} \sum_{k \in K} \left\| \frac{1}{|K|} \sum_{k' \in K} \kappa(x + k' \cdot x + k_1 \cdot x + k_1 \cdot y) - \kappa(x + k \cdot x) - \kappa(y + x \cdot y) \right\|_{\beta}
\]

\[\leq \left(2|K|\right)^{\beta} \sum_{k' \in K} \left\| \frac{1}{|K|} \sum_{k \in K} J^n \kappa(x + k' \cdot x + k \cdot y + k_1 \cdot y) - J^n \kappa(x + k' \cdot x) - J^n \kappa(y + k' \cdot y) \right\|_{\beta}
\]

\[\leq \left(2|K|\right)^{\beta} \sum_{k' \in K} \left\| \frac{1}{|K|} \sum_{k \in K} L^n \psi(x + k' \cdot x + k_1 \cdot y + k_1 \cdot y) \right\|_{\beta}
\]

which proves \([2.27]\) for $n + 1$. Now, by letting $n \to \infty$, in \([2.27]\), we obtain that q is a solution of equation \((1.2)\). According to the fixed point theorem (Theorem 1.1, (3)) and inequality \((2.24)\), we get

\[d(\varphi - g(0) - h(0), q) \leq \frac{1}{1 - L} d(J(\varphi - g(0) - h(0)), \varphi - g(0) - h(0)) \leq \frac{1}{2^\beta (1 - L)} \]

and so we have

\[\|\varphi(x) - q(x) - g(0) - h(0)\| \leq \frac{1}{2^\beta (1 - L)} \psi(x,x) \]

for all $x \in E$. On the other hand if we put

\[
\omega(x) = f(x) - \varphi(x) = f(x) - \frac{1}{|K|} \sum_{k \in K} f(k \cdot x)
\]
for all $x \in E$, it follows from inequalities (2.10), (2.13) and the triangle inequality that

$$
\| \frac{1}{|K|} \sum_{k' \in K} \omega(x + k' \cdot y) - \omega(x) \|_\beta
$$

(2.31)

$$
= \| \frac{1}{|K|} \sum_{k' \in K} f(x + k' \cdot y) - \frac{1}{|K|} \sum_{k \in K} \varphi(x + k \cdot y) - f(x) + \varphi(x) \|_\beta
$$

$$
\leq \| \frac{1}{|K|} \sum_{k \in K} \varphi(x + k \cdot y) + \varphi(x) - g(0) - h(0) \|_\beta
$$

$$
+ \| \frac{1}{|K|} \sum_{k' \in K} f(x + k' \cdot y) - f(x) - \frac{1}{|K|} \sum_{k' \in K} f(k' \cdot y) + g(0) + h(0) \|_\beta
$$

$$
\leq \frac{1}{|K|^\beta} \sum_{k \in K} [\varphi(k \cdot x, y) + \varphi(k \cdot x, 0)] + \frac{|K|}{|K|^\beta} \varphi(0, y) + \varphi(x, y) + \varphi(x, 0) + \varphi(0, y) = \chi(x, y)
$$

for all $x, y \in E$. By using the same definition for X as in the above proof, the generalized metric on X

$$
d(g, h) = \inf\{C \in [0, \infty] : \|g(x) - h(x)\|_\beta \leq C \chi(x, x), \forall x \in E\}. \quad (2.32)
$$

and some ideas of [34], we will prove that there exists a unique solution j of equation (1.3) such that

$$
\| \omega(x) - j(x) \|_\beta \leq \frac{1}{1 - L} \chi(x, x)
$$

(2.33)

for all $x \in E$.

First, from (2.2) we can easily verify that $\chi(x, y)$ satisfies

$$
\sum_{k \in K} \chi(x + k \cdot x, y + k \cdot y) \leq (2|K|)^\beta \chi(x, y)
$$

(2.34)

Let us consider the function $T : X \rightarrow X$ defined by

$$
(Th)(x) = \frac{1}{2|K|} \sum_{k \in K} h(x + k \cdot x)
$$

(2.35)

for all $x \in E$. Given $g, h \in X$ and $C \in [0, \infty]$ such that $d(g, h) \leq C$, so we get

$$
\| (Tg)(x) - (Th)(x) \|_\beta = \| \frac{1}{2|K|} \sum_{k \in K} g(x + k \cdot x) - \frac{1}{2|K|} \sum_{k \in K} h(x + k \cdot x) \|_\beta
$$

$$
= \frac{1}{2|K|^\beta} \| \sum_{k \in K} [g(x + k \cdot x) - h(x + k \cdot x)] \|_\beta
$$

$$
\leq \frac{1}{2|K|^\beta} \sum_{k \in K} \| g(x + k \cdot x) - h(x + k \cdot x) \|_\beta \leq C L \chi(x, x)
$$
for all $x \in E$. Hence, we see that $d(Tg, Th) \leq Ld(g, h)$ for all $g, h \in X$. So T is a strictly contractive operator.

Putting $y = x$ in (2.31), we have

$$
\| \frac{1}{2K} \sum_{k \in K} \omega(x + k \cdot x) - \frac{1}{2} \omega(x) \|_\beta \leq \frac{1}{2\beta} \chi(x, x)
$$

(2.36)

for all $x \in E$, so by the triangle inequality, we get

$$
d(T\omega, \omega) \leq \frac{2}{2\beta}.
$$

(2.37)

From the fixed point theorem (Theorem 1.1), it follows that there exits a fixed point j of T in X such that

$$
j(x) = \lim_{n \to \infty} \frac{1}{|2K|} \sum_{k_1, \ldots, k_n \in K} \omega \left(x + \sum_{i_j < i_{j+1}, k_{i_j} \in \{k_1, \ldots, k_n\}} [(k_{i_1}) \cdots (k_{i_p})] \cdot x \right)
$$

(2.38)

for all $x \in E$ and

$$
d(\omega, j) \leq \frac{1}{1-L} d(T\omega, \omega).
$$

(2.39)

So, it follows from (2.37) and (2.39) that

$$
\| \omega(x) - j(x) \|_\beta \leq \frac{2}{2\beta} \frac{1}{1-L} \chi(x, x)
$$

(2.40)

for all $x \in E$.

By the same reasoning as in the above proof, one can show by induction that

$$
\| \frac{1}{|K|} \sum_{k \in K} T^n \omega(x + k \cdot y) - T^n \omega(x) \|_\beta \leq L^n \chi(x, y)
$$

(2.41)

for all $x, y \in E$ and for all $n \in \mathbb{N}$. Letting $n \to \infty$ in (2.41), we get that j is a solution of the generalized Jensen functional equation (1.3).

From (2.11), (2.29) (2.30), (2.40) and the triangle inequality, we obtain

$$
\| f(x) - q(x) - j(x) - g(0) - h(0) \|_\beta \leq \frac{2}{2\beta} \frac{1}{1-L} \chi(x, x) + \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x),
$$

(2.42)

and

$$
\| g(x) - q(x) - j(x) - g(0) \|_\beta \leq \varphi(x, 0) + \frac{2}{2\beta} \frac{1}{1-L} \chi(x, x) + \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x)
$$

(2.43)

and

$$
\| h(x) - q(x) - h(0) \|_\beta \leq \frac{1}{2\beta} \frac{1}{1-L} \psi(x, x) + \varphi(0, x)
$$

(2.44)

for all $x \in E$.

Finally, in the following we will verify that the solution j satisfies the condition

$$
\frac{1}{|K|} \sum_{k \in K} j(k \cdot x) = 0
$$

(2.45)
for all $x \in E$ and we will prove the uniqueness of the solutions q and j which satisfy the inequalities (2.42), (2.43) and (2.44).

Due to definition of ω, we get $
 \frac{1}{|K|} \sum_{k \in K} \omega(k \cdot x) = 0$ for all $x \in E$, so we get $
 \frac{1}{|K|} \sum_{k \in K} T \omega(k \cdot x) = 0, \ldots, \nu \frac{1}{|K|} \sum_{k \in K} T^n \omega(k \cdot x) = 0$. So, by letting $n \to \infty$, we obtain the relation (2.45).

Now, according to (2.44) and (2.2) we get by induction that

$$\|J^n(h - h(0))(x) - q(x)\|_\beta \leq L^n[\frac{1}{2^\beta} \frac{1}{1 - L} \psi(x, x) + \varphi(0, x)]$$

(2.46)

for all $x \in E$ and for all $n \in \mathbb{N}$. So, by letting $n \to \infty$, we get

$$\lim_{n \to \infty} J^n(h - h(0))(x) = q(x)$$

(2.47)

for all $x \in E$, which proves uniqueness of q.

In a similar way, by induction we obtain

$$\|A^n(f - q - h(0) - g(0))(x) - j(x)\|_\beta \leq L^n[\frac{1}{1 - L} \chi(x, x) + \frac{1}{2^\beta} \frac{1}{1 - L} \psi(x, x)]$$

(2.48)

for all $x \in E$ and for all $n \in \mathbb{N}$, where

$$A l(x) = \frac{1}{|K|} \sum_{k \in K} l(x + k \cdot x).$$

Consequently, we have

$$\lim_{n \to \infty} A^n(f - q - h(0) - g(0))(x) = j(x)$$

(2.49)

for all $x \in E$. This proves the uniqueness of the function j and this completes the proof of theorem.

In the following, we will investigate some special cases of Theorem 2.1, with the new weaker conditions.

Corollary 2.2. Let E be a vector space over \mathbb{K}. Let K be a finite abelian subgroup of the automorphism group of $(E, +)$. Let $\alpha = \frac{\log(|K|)}{\log(2)}$. Fix a nonnegative real number β such that $\frac{\alpha}{\alpha + 1} < \beta < 1$ and choose a number p with $0 < p < \beta + (\beta - 1)\alpha$ and let F be a complete β-normed space over \mathbb{K}. If a function $f: E \to F$ satisfies

$$\| \frac{1}{|K|} \sum_{k \in K} f(x + k \cdot y) - g(x) - h(y)\|_\beta \leq \theta(||x||^p + ||y||^p)$$

(2.50)

and $\|x + k \cdot x\| \leq 2||x||$, for all $k \in K$, for all $x, y \in E$ and for some $\theta > 0$, then there exists a unique solution $q: E \to F$ of the generalized quadratic functional equation (1.2) and a unique solution $j: E \to F$ of the generalized Jensen functional equation (1.3) such that

$$\frac{1}{|K|} \sum_{k \in K} j(k \cdot x) = 0,$$

(2.51)
\begin{equation}
\|f(x) - q(x) - j(x) - g(0) - h(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{(2|K|)^\beta}{(2|K|)^\beta - 2^\beta |K|} \|x\|^p |\frac{|K|}{|K|^\beta} (4 + 4.3^p) + 2 + 2.3^p| \tag{2.52}
\end{equation}

\begin{equation}
\|g(x) - q(x) - j(x) - g(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{(2|K|)^\beta}{(2|K|)^\beta - 2^\beta |K|} \|x\|^p |\frac{|K|}{|K|^\beta} (4 + 43^p) + 2 + 2.3^p| + \theta \|x\|^p \tag{2.53}
\end{equation}

and

\begin{equation}
\|h(x) - q(x) - h(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{(2|K|)^\beta}{(2|K|)^\beta - 2^\beta |K|} \|x\|^p |\frac{|K|}{|K|^\beta} (2 + 2.3^p)| + \theta \|x\|^p \tag{2.54}
\end{equation}

for all \(x \in E\).

Corollary 2.3. Let \(E\) be a vector space over \(\mathbb{K}\). Fix a nonnegative real number \(\beta\) less than 1 and choose a number \(p\) with \(0 < p < 1\) and let \(F\) be a complete \(\beta\)-normed space over \(\mathbb{K}\). If a function \((f, g, h): E \rightarrow F\) satisfies

\begin{equation}
\|f(x + y) - g(x) - h(y)\|_\beta \leq \theta(\|x\|^p + \|y\|^p) \tag{2.55}
\end{equation}

for all \(x, y \in E\) and for some \(\theta > 0\), then there exists an unique additive function \(a: E \rightarrow F\) such that

\begin{equation}
\|f(x) - a(x) - g(0) - h(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{2^\beta}{2^\beta - 2p} \|x\|^p [6 + 6.3^p], \tag{2.56}
\end{equation}

\begin{equation}
\|g(x) - a(x) - g(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{2^\beta}{2^\beta - 2p} \|x\|^p [6 + 6.3^p] + \theta \|x\|^p \tag{2.57}
\end{equation}

and

\begin{equation}
\|h(x) - a(x) - h(0)\|_\beta \leq \frac{\theta}{2^\beta} \frac{2^\beta}{2^\beta - 2p} \|x\|^p [2 + 2.3^p] + \theta \|x\|^p \tag{2.58}
\end{equation}

for all \(x \in E\).

Corollary 2.4. Let \(E\) be a vector space over \(\mathbb{K}\). Let \(K = \{I, \sigma\}\) where \(\sigma\) is an involuntary of \(E\) \((\sigma(x + y) = \sigma(x) + \sigma(y)\) and \(\sigma(\sigma(x)) = x\) for all \(x, y \in E\)). Fix a nonnegative real number \(\beta\) such that \(\frac{1}{2} \leq \beta < 1\) and choose a number \(p\) with \(0 < p < 2\beta - 1\) and let \(F\) be a complete \(\beta\)-normed space over \(\mathbb{K}\). If a function \((f, g, h): E \rightarrow F\) satisfies

\begin{equation}
\|f(x + y) + f(x + \sigma(y)) - g(x) - h(y)\|_\beta \leq \theta(\|x\|^p + \|y\|^p) \tag{2.59}
\end{equation}

and \(\|x + \sigma(x)\| \leq 2\|x\|\), for all \(x, y \in E\) and for some \(\theta > 0\), then there exists a unique solution \(q: E \rightarrow F\) of the generalized quadratic functional equation

\begin{equation}
f(x + y) + f(x + \sigma(y)) = 2f(x) + 2f(y), \quad x, y \in E \tag{2.60}
\end{equation}

and a unique solution \(j: E \rightarrow F\) of the generalized Jensen functional equation

\begin{equation}
f(x + y) + f(x + \sigma(y)) = 2f(x), \quad x, y \in E \tag{2.61}
\end{equation}

such that

\begin{equation}
\sigma(x) = -j(x), \tag{2.62}
\end{equation}

\begin{equation}
\|f(x) - q(x) - j(x) - g(0) - h(0)\|_\beta \leq \theta \frac{4^\beta}{2^\beta |K|^\beta} \|x\|^p [\frac{2}{2^\beta} (4 + 4.3^p) + 2 + 2.3^p] \tag{2.63}
\end{equation}
\[\|g(x) - q(x) - j(x) - g(0)\|_\beta \leq \frac{\theta}{2^3} \frac{4^\beta}{4^\beta - 2p_2} \|x\|^p \left[\frac{2}{2^\beta} (4 + 43^p + 2 + 23^p) + \theta \|x\|^p \right] \] (2.64)

and

\[\|h(x) - q(x) - h(0)\|_\beta \leq \frac{\theta}{2^3} \frac{4^\beta}{4^\beta - 2p_2} \|x\|^p \left[\frac{2}{2^\beta} (2 + 23^p) + \theta \|x\|^p \right] \] (2.65)

for all \(x \in E \).

Corollary 2.5. Let \(E \) be a vector space over \(\mathbb{K} \) and let \(F \) be a complete \(\beta \)-normed space over \(\mathbb{K} \). Let \(f: E \rightarrow F \) be a mapping for which there exists a function \(\varphi : E \times F \rightarrow [0, \infty) \) and a constant \(L < 1 \), such that

\[\|f(x + y) + f(x + \sigma(y)) - g(x) - h(y)\|_\beta \leq \varphi(x, y) \] (2.66)

and

\[\varphi(2x, 2y) + \varphi(x + \sigma(x), y + \sigma(y)) \leq 4^\beta L \varphi(x, y) \] (2.67)

for all \(x, y \in E \). Then, there exists a unique solution \(q: E \rightarrow F \) of the generalized quadratic functional equation (2.62) and a unique solution \(j: E \rightarrow F \) of the generalized Jensen functional equation (2.63) such that

\[j(\sigma(x)) = -j(x) \] (2.68)

\[\|f(x) - q(x) - j(x) - g(0) - h(0)\|_\beta \leq 2 \frac{1}{2^\beta} \frac{1}{1 - L} \chi(x, x) + \frac{2}{2^\beta} \frac{1}{1 - L} \psi(x, x) \] (2.69)

\[\|g(x) - q(x) - j(x) - g(0)\|_\beta \leq \varphi(x, 0) + \frac{2}{2^\beta} \frac{1}{1 - L} \chi(x, x) + \frac{1}{2^\beta} \frac{1}{1 - L} \psi(x, x) \] (2.70)

and

\[\|h(x) - q(x) - h(0)\|_\beta \leq \frac{1}{2^\beta} \frac{1}{1 - L} \psi(x, x) + \varphi(0, x) \] (2.71)

for all \(x \in E \), where

\[\chi(x, y) = \frac{2}{2^\beta} \varphi(0, y) + \varphi(x, y) + \varphi(x, 0) + \varphi(0, y) \]

\[+ \frac{1}{2^\beta} [\varphi(x, y) + \varphi(\sigma(x), y) + \varphi(x, 0) + \varphi(\sigma(x), 0)] \]

and

\[\psi(x, y) = \frac{2}{2^\beta} \varphi(0, y) + \frac{1}{2^\beta} [\varphi(x, y) + \varphi(\sigma(x), y) + \varphi(x, 0) + \varphi(\sigma(x), 0)]. \]

Corollary 2.6. Let \(E \) be a vector space over \(\mathbb{K} \) and let \(F \) be a complete \(\beta \)-normed space over \(\mathbb{K} \). Let \(f: E \rightarrow F \) be a mapping for which there exists a function \(\varphi : E \times F \rightarrow [0, \infty) \) and a constant \(L < 1 \), such that

\[\|f(x + y) - g(x) - h(y)\|_\beta \leq \varphi(x, y) \] (2.72)

and

\[\varphi(2x, 2y) \leq 2^\beta L \varphi(x, y) \] (2.73)

for all \(x, y \in E \). Then, there exists an unique additive function \(a: E \rightarrow F \) such that

\[\|f(x) - a(x) - g(0) - h(0)\|_\beta \leq \frac{2}{2^\beta} \frac{1}{1 - L} \chi(x, x) + \frac{1}{2^\beta} \frac{1}{1 - L} \psi(x, x), \] (2.74)
\[\| g(x) - a(x) - g(0) \|_\beta \leq \varphi(x, 0) + \frac{2 \beta}{1 - \lambda} \chi(x, x) + \frac{1}{2 \beta} \frac{1}{1 - \lambda} \psi(x, x) \quad (2.75) \]

and

\[\| h(x) - a(x) - h(0) \|_\beta \leq \frac{1}{2 \beta} \frac{1}{1 - \lambda} \psi(x, x) + \varphi(0, x) \quad (2.76) \]

for all \(x \in E \), where

\[\chi(x, y) = \varphi(0, y) + \varphi(x, y) + \varphi(x, 0) + \varphi(0, y) + [\varphi(x, y) + \varphi(x, 0)] \]

and

\[\psi(x, y) = \varphi(0, y) + [\varphi(x, y) + \varphi(x, 0)] \]

References

